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Electrode reactions can be divided into two 

general groups

Faradaic Reactions at Metal Electrodes

Electron Transfer:

Ion Transfer:

Feaq
2+ ⇔ Feaq

3+ + e−

FeM
2+ ⇔ Feaq

2+

As we have discussed many times, electrons are Fermions while ions follow the Boltzmann

statistic. Consequently, the physical aspects behind these processes are entirely different. 

Here, we shall concentrate on Electron Transfer at metallic electrodes.

Outer sphere reactions involves the tunnelling 

of electrons across the compact layer. Roughly 

independent of the electrode properties.

Inner sphere reactions involves dehydrated 

redox particles at the IHP (adsorbed species)



3

s s
ox red red oxv k c k c= −

( )ox
ox exp

G
k A

kT
φ∗⎛ ⎞∆

= −⎜ ⎟
⎝ ⎠

( )red
red exp

G
k A

kT
φ∗⎛ ⎞∆

= −⎜ ⎟
⎝ ⎠

( ) ( ) ( )ox ox eq eqG G eφ φ α φ φ∗ ∗∆ = ∆ − −

( ) ( ) ( )red red eq eqG G eφ φ β φ φ∗ ∗∆ = ∆ + −

( )1

eq

oxG
e

φ

φ
α

φ

∗∂∆
= −

∂

( )1

eq

redG
e

φ

φ
β

φ

∗∂∆
=

∂

Phenomenological Relationship Between Current and Electrode Potential

The rate of electron transfer can be simply described as in homogeneous chemical kinetics

8.1 where from the absolute rate theory it follows, 

8.2 8.3

activation energy

The activation terms are dependent on the electrode potential but not the pre-exponential factor.

8.4

8.5
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It follows that the Gibbs energy of activation and reaction are correlated by:

( ) ( )ox red ox redG G G Gφ φ∗ ∗∆ − ∆ = − ( ) ( )ox eq red eq eqG G Gφ φ∗ ∗ ∗∆ = ∆ = ∆8.6a 8.6b

( ) ( ) ( )ox red eqG G eφ φ φ φ∗ ∗∆ − ∆ = − −
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e e
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J ek c ek c
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= −

Assuming an outer sphere electron transfer reaction in which the electrostratic

energy of the ionic species is not significantly affected by the electrode 

potential,it follows that

8.7

Differentiating eqs. 8.4, 8.5 and 8.7, we obtain 8.8

Further developing eq. 8.1, we get
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We can finally derive the Butler-Volmer equation for electron transfer reactions 

8.11

8.12

Recalling the Nernst equation (5.21), 

Exchange current density

Overpotential
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For large overpotentials: logarithmic dependence of the current density with the overpotential (Taffel regime).

e
kT

J J η=

Few further remarks: the transfer coefficient α is equivalent to the Broenstedt coefficient.

α determines the symmetry (or lack of) of the current potential curve.

The Butler-Volmer analysis based on surface concentrations.

Forget expression 8.12 for inner sphere reactions.

For low overpotentials: the system behave linearly as an ohmic resistance



7

1.- Heavy particles of the inner and outer sphere must assume a suitable intermediate 

configuration

2.- Electron exchange is isoenergetic.

3.- System relax to its new equilibrium configuration

A Semi-quantitative Approach to Electron Transfer Rate Constant

Qualitatively, we can visualise outer sphere electron transfer in a series of steps involving the approach of 

reactants to the electrode surface, reorganisation of the solvent structure and electron tunnelling. For these 

reasons, although outer sphere reactions are fast indeed, they are not infinitely fast! Typical activation energies lie 

around 0.2 to 0.4 eV.

Frank-Condon 

principle:
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This chain of events can also be rationalised in terms of potential energy surface diagrams,

The reaction will take place via the Saddle point of the 

intersection between the two hypersurfaces. At this point, 

the activation energy is minimised. If the electron transfer 

takes place as soon as the system reach the Saddle 

point, then the reaction is considered adiabatic. If the 

system passes several times through this point with no 

electron transfer, the process is referred to as Non-

adiabatic.

For a more quantitative approach to the electron transfer rate, we need to tackle the contributions of 

the inner and outer sphere as well as their reorganisation. Let us use the harmonic approximation. 

Around equilibrium, the potential energy of the system is developed into a power series of the various 

coordinates involved. The series is taken up to the second term (this is why we draw parabolas and 

paraboloids). By choosing the appropriate set of coordinates, we can eliminate the cross-terms 

between the various coordinates, leaving a set of independents oscillators (intersection of 

paraboloids).
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For electron transfer, we must define the coordinates for each of the oxidised states (qi) with respect to the 

equilibrium positions (yi):

( )
2

21
2ox ,oxox( )i i i i im q YU q e ω −= +∑

ei are the potential energy 

at equilibrium

mi and ωi are the effective mass and 

frequency of mode I, respectively

As a first approximation

As we mentioned before, the reaction takes place via the saddle point located between Uox and Ured. Let us define 

the equilibrium coordinates as:

The Saddle point will correspond to

8.13 8.14

8.15
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The Saddle point is common to both potential energy surfaces, so:
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8.16

where, 8.17 8.18

reorganisation energy

8.21

and

The activation energies can be expressed as:
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8.19 8.20

and considering that the relative difference in the energies of 

reduced and oxidised species is determined by the overpotential

We finally get: 
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At the limit of low overpotentials λ >> eη eq. 8.22 can be simplified to:  

8.24

which has the same form of the Butler-Volmer expression with an activation energy of λ/4 at equilibrium and a 

transfer coefficient of 0.5. This approach lies at the centre of Marcus model for electron transfer. From here, 

we go on to obtain expressions for the solvent reorganisation energy in terms of the size of the redox species, 

distance from the electrode surface, dielectric constants and so on (see eq. 4.6) . On the other hand, the pre-

exponential factor is determined by the electronic coupling between the redox species and the metal electrode. 

Again, only for outer-sphere electron transfer reactions, we have a fair understanding of this parameter. We 

will see all that later. What we have not addressed so far is the correlation between electron transfer rate and 

the overlap of the fluctuating energy levels (chapter 4) with the Fermi level of the metal.
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The Gerischer’s formulation

, ,t t t I occ F vacv k w D D=

red red red( ) ( )D E c W E=

ox ox ox( ) ( )D E c W E=

As we mentioned earlier, outer-sphere electron transfer takes place by isoenergetic tunnelling across the 0.3 to 

0.5 nm compact layer. The rate of the reaction will depend on the density states occupied by the electron at the 

initial state and vacant for electrons in the final state.

8.25

Transmission 

coefficient

Tunnelling 

probability

State density in 

the final state

State density in 

the initial state

Eq. 8.26 reminds ourselves that the state density of electrons in the reduced and oxidised particles is is given by 

the probability density distribution and the concentration of the particles (see eqs. 4.7-4.9):

8.26
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redox red ox( ) ( ) ( )D E D E D E= +

M M(e) M(h)( ) ( ) ( )D E D E D E= +

while the total density is defined as: 8.27

Similarly for the state density of electrons at the electrode: 8.28

We can express the anodic and cathodic currents as a 

function of the energy level as:

M(e) ox( ) ( ) ( ) ( )ti E ek E D E D E− −=

M(h) red( ) ( ) ( ) ( )ti E ek E D E D E+ += 8.29

8.30

Electron tunnelling rate constant

Introducing the Fermi distributions, we obtain:

( )( ) ( )( ){ }1M redoxM redox( ) ( ) ( ) ( )t F Fi E ek E D E f E E D E f E E− −= − − −

( )( ){ } ( )( )1M redoxM redox( ) ( ) ( ) ( )t F Fi E ek E D E f E E D E f E E+ += − − −

8.31a

8.31b
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The overall electron transfer current is obtained by integration of the microscopic current elements over the entire 

energy range:

( )i i E dE
∞− −

−∞
= ∫ ( )i i E dE

∞+ +

−∞
= ∫ 8.32

In principle, we have now all the elements required to calculate the current associated with electron transfer. 

Coming back to eq. 8.26, we can develop the probability density for the redox species as (see chapter 4):
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4
redoxox red

red red red
red

( ) ( ) exp exp FE EcW E W E
c kT kT

βλ ⎛ ⎞− −⎛ ⎞ ⎜ ⎟= − −⎜ ⎟ ⎜ ⎟⎝ ⎠
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8.33
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c kT kT

βλ ⎛ ⎞−⎛ ⎞ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎝ ⎠
⎝ ⎠

8.34

Symmetry factor
λox = λred
β = 0.5

At the energy associated with the Fermi level of the redox species, EF redox( )

( ) ( ) ( )
1
2 redox red oxredox redox redoxF F FD E D E D E= = 8.35
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Consequently, we obtain from 8.33 to 8.35 

( )( ) ( )( ) ( ) ( )( )1 redox
red redox redredox redox( ) ( ) exp F

F F

E E
D E D E f E E D E

kT

β⎛ ⎞− −
⎜ ⎟= − = −
⎜ ⎟
⎝ ⎠

( )( ) ( ) ( )( )11
2

redox
redox redox exp F

F

E E
D E

kT

β⎛ ⎞− −
⎜ ⎟= −
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8.37

And the total state density: ( ) ( ) ( )redox red oxD E D E D E= +
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8.38

Exchange Current Density

At equilibrium: ,M ,redox

( ) ( ) ( )

F F

t t t

E E

i i i

k k k

i E i E i E

− +

+ −

+ −

=

= =

= =

= =

Principle of microreversibility

From eqs 8.31a and 8.31b, we obtain  
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( )( ) ( )( ){ }1M redoxM redox( ) ( ) ( ) ( )t F Fi E ek E D E f E E D E f E E− = − − − =

( )( ){ } ( )( )1M redoxM redox( ) ( ) ( ) ( )t F Fek E D E f E E D E f E E i E+= − − − =

8.39

As usual, the exchange current is calculated by integrating over the energy range:

( )( ) ( )( ){ }1M redoxM redox( ) ( ) ( ) ( )t F Fi E ek E D E f E E D E f E E dE
∞

−∞
= − − −∫ 8.40

Further development of eq. 8.40 leads to:
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90% of the integrand is 0.25 eV around the Fermi level. Finally, the exchange current density corresponds to:

( ){ } ( )( ) ( )( ) ( )( )2 1 M redoxM M redoxsin t F F F
e kTi k E D E D Eπ

β π
≈

−
8.43
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Reaction Current Under Polarisation

Out of equilibrium, the Fermi levels are offset by the overvoltage: ( ) ( )M redoxF FE E eη= − 8.44

Under these conditions, ( ) ( ) ( )i i iη η η+ −= − 8.45
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8.46
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8.47

Introducing 8.36 and 8.37 into 8.46 and 8.47,
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8.49
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